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1 DATASET STATISTICS
We construct our pretraining dataset with four public datasets
including Conceptual Captions 3M[9], SBU Captions[8], COCO[7],
and Visual Genome[4]. These data contain 4M images in total.
Detailed dataset statistics are available in Table 1.

2 EXPERIMENTS ON IMAGE-TEXT
CLASSIFICATION

To evaluate the effectiveness and generalization of our proposed
method, we finetune our model on two typical image-text classifica-
tion tasks: Visual Question Answering(VQA) and Neutral language
for Visual Reasoning(NLVR)[10].

Visual Question Answering requires the model to predict the
answer according to the given image and question. We evaluate our
model on VQAv2[1] dataset. In practice, it is common to view this
task as an image-text classification task with 3129 answer classes, so
are we. As we finetuned our model on the training set and validation
set following previous work, then we submit the results referenced
on the test set to the evaluation server 1 to get the final score.

Neural Language for Visual Reasoning is a binary classifica-
tion task. Given a triplet of two images and one question, a common
way is to reformulate the triplet input into two pairs, each pair con-
sisting of a different image but the same question text. both of the
pairs will be fed into our model and get the representations, the
classification head takes the concatenation of the representations
of the two pairs and outputs the classification results.

Note that, during the pre-training process, the number of VCM
decoder layers is set as 6, and we finetune our pre-trained model
on VAQv2 and NLVR2 dataset for 10 epochs using a batchsize of 64,
respectively. The learning rate of the unimodal encoders is 10−6,
the learning rate of other parts of the model is five times of the
unimodal encoders’.

Table 2 presents our results on the above two tasks. The results
of methods which using region-based visual features are listed in
the upper half of the table and the results of patch-feature-based
methods are listed on the bottom half of the table. Compared with
the previous methods, our model can always achieve good perfor-
mance with the absolute improvement of 1 point of VQA score.
As for the visual reasoning task, our model also achieve the best
performance compared with other patch-feature-based models. All
the results have demonstrated the effectiveness and generalization
of our model.

3 HYPERPARAMETER STUDY ON THE
NUMBER OF VCM DECODER LAYERS

We use different numbers of the VCM decoder layers during pre-
training to study the effects of the decoder layers on image-text
retrieval and VQA tasks. We finetune our pretrained model on
Flick30K dataset when performing the image-text retrieval task.
The zero VCM decoder layer means we don’t use an additional
1https://eval.ai/web/challenges/challenge-page/830/overview

Dataset Images Texts

Conceptual Caption 3M [9] 2.97M 2.97M
SBU Caption[8] 859K 859K
COCO[7] 113K 567K
Visual Genome [4] 108K 5.41M

Table 1: Statistics of datasets for pretraining.

Time VQAv2 NLVR2
Models ViLT’s Ours test-dev test-std dev test-P

UNITER𝐵[2] 900ms - 72.70 72.91 77.18 77.85
UNITER𝐿[2] - - 73.82 74.02 79.12 79.98
UNIMO𝐿[6] - - 75.06 75.27 - -
VinVL𝐵[12] 650ms - 75.95 76.12 82.05 83.08
VinVL𝐿[12] - - 76.52 76.60 82.67 83.98

ViLT[3] 15ms 28ms 71.26 - 75.70 76.13
VisualParsing[11] - - 74.00 74.17 77.61 78.05
ALBEF-4M[5] - 52ms 74.54 74.70 80.24 80.50
Ours - 53ms 77.67 77.79 82.33 83.08

Table 2: Comparison with existing VLP methods on VQAv2,
NLVR2. The best scores are in bold, and the second-best
scores are underlined.We also report the VQA inference time
mersured by ViLT and in our hardware environment setting

VCM decoder Image-to-Text Text-to-Image VQAv2
layers R@1 R@5 R@1 R@5 test-dev

w/o VCM - 96.2 99.9 85.4 97.5 77.24
with VCM 0 96.1 99.9 84.7 97.0 77.00
with VCM 4 96.0 100.0 86.2 97.6 77.39
with VCM 6 96.2 100.0 86.4 97.7 77.67
with VCM 8 96.8 100.0 86.3 97.7 77.45

Table 3: Comparisons of pretrain models with different VCM
decoder layer number on Flickr30K and VQAv2

decoder. When performing VCM task, the multi-modal encoder will
be used as the VCM decoder, which will take the visible embedded
patches and the masked tokens as input and restore the masked
parts of the images.

We present the finetuned results in Table 3. If we don’t apply an
additional VCM decoder, the performance of the model on down-
stream tasks will drop, especially on text-to-image retrieval tasks.
As we use more layers, the model becomes better for image-text
retrieval tasks. Due to the limited GPU memory, we cannot use
more decoder layers than eight layers. As for VQA task, the model
achieves the best performance when we use a six-layer VCM de-
coder, more decoder layers are not helpful for the model.
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(a) text-to-image retrieval

(b) image-to-text retrieval

Figure 1: Visual comparisons of image-text retrieval examples between each stage on Flickr30K dataset, we provide the top-5
results of each stage in our inference process. The results in red boxes are the ground truth.



Supplementary Material for ACMMM 2022 Conference Paper2506 Woodstock ’18, June 03–05, 2018, Woodstock, NY

Figure 2: Grad-CAM heatmaps computed on the cross-attention maps in the last 3rd layer of the multi-model encoder for VQA
model.

4 VISUALIZATIONS
We provide more image-text retrieval examples which are coming
from Flick30K dataset for visual comparison in Figure 1. We also
provide the Grad-CAM heatmaps of the VQA model in Figure 2, the
heatmaps are computed on the cross-attention maps in the last 3rd
layer of the multi-model encoder. As we can see, our model clearly
understands the input question and is able to focus on the part of
the image that is associated with the answer.
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