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6 Proof of Lemma 1
Lemma 1. The 1st PCA vector 𝜙 (1) of X: (a) maximizes the global

variance var(𝜙 (1) ) = 1
P
∑P
𝑝=1 (𝜙

(1)
𝑝 )2; (b) minimizes the reconstruc-

tion loss min𝑍 (1) ∥X − X𝑍 (1) (𝑍 (1) )⊤∥2, where 𝑍 (1) is a bi-direction
mapping between high-dimensional X and low-dimensional 𝜙 (1) .

Proof. Given N× images, X = (𝑋⊤
1 , 𝑋

⊤
2 , · · · , 𝑋

⊤
P )

⊤ ∈ RP×D are
their DINOv2 features. P = N × H ×W are total pixels and𝑋 𝑗 ∈ RD.

After a Zero Standardization, each column
∑P
𝑝=1 𝑥𝑝𝑑 = 0. The

1st PCA vector 𝜙 (1) = X𝑍 (1) = (𝜙 (1)
1 , 𝜙

(1)
2 , · · · , 𝜙 (1)

P )⊤ ∈ RP is
obtained by a linear mapping 𝑍 (1) = (𝑧 (1)1 , 𝑧

(1)
2 , · · · , 𝑧 (1)D )⊤ ∈ RD

and ∥𝑍 (1) ∥2 = 1 as normalization. Then 𝜙
(1)
𝑝 =

∑D
𝑑=1 𝑥𝑝𝑑𝑧

(1)
𝑑

.

The variance of 𝜙 (1) is var(𝜙 (1) ) = 1
P
∑P
𝑝=1 (𝜙

(1)
𝑝 − E(𝜙 (1) ))2,

then the expectation E(𝜙 (1) ) is calculated as:

E(𝜙 (1) ) = 1
P

P∑︁
𝑝=1

D∑︁
𝑑=1

𝑥𝑝𝑑𝑧
(1)
𝑑

=
1
P

D∑︁
𝑑=1

𝑧
(1)
𝑑

P∑︁
𝑝=1

𝑥𝑝𝑑 = 0. (12)

Therefore, var(𝜙 (1) ) = 1
P
∑P
𝑝=1 (𝜙

(1)
𝑝 )2 = ∥𝜙 (1) ∥2. Maximal vari-

ance max𝑍 (1) (var(𝜙 (1) )) is formulated as:

max
𝑍 (1)

∥X𝑍 (1) ∥2 = max
𝑍 (1)

(𝑍 (1) )⊤X⊤X𝑍 (1) . (13)

From another perspective, PCA also minimizes the reconstruc-
tion loss based on the bi-directional mapping via forward 𝑍 (1) and
backward (𝑍 (1) )⊤, which is derived as:

min
𝑍 (1)

∥X − X𝑍 (1) (𝑍 (1) )⊤∥2

= min
𝑍 (1)

tr(X⊤X − X⊤X𝑍 (1) (𝑍 (1) )⊤

− 𝑍 (1) (𝑍 (1) )⊤X⊤X + 𝑍 (1) (𝑍 (1) )⊤X⊤X𝑍 (1) (𝑍 (1) )⊤)

= min
𝑍 (1)

−2tr(X⊤X𝑍 (1) (𝑍 (1) )⊤) + tr(X⊤X𝑍 (1) (𝑍 (1) )⊤)

= max
𝑍 (1)

tr(X⊤X𝑍 (1) (𝑍 (1) )⊤)

= max
𝑍 (1)

(𝑍 (1) )⊤X⊤X𝑍 (1) = Eq. 13

(14)

∗Corresponding author.

Here, we can observe that Eq.13 and Eq.14 are equivalent. LetA =

X⊤X, function 𝐹 (𝑍 (1) ) is constructed with a Lagrange Multiplier _
to solve Eq.13 and Eq.14:

𝐹 (𝑍 (1) ) = (𝑍 (1) )⊤A𝑍 (1) + _(1 − (𝑍 (1) )⊤𝑍 (1) ) . (15)

Let 𝜕𝐹 (𝑍 (1) )
𝜕𝑍 (1) = 0, thus A𝑍 (1) = _𝑍 (1) is exactly the form of

eigenvalue decomposition. With ∥𝑍 (1) ∥2 = 1 and Eq. 13 and 14,

max
𝑍 (1)

(𝑍 (1) )⊤_𝑍 (1) = max
𝑍 (1)

_(𝑍 (1) )⊤𝑍 (1) = max
𝑍 (1)

_, (16)

i.e., when eigenvalue _ is maximized, its corresponding eigenvector
is the solution of 𝑍 (1) . To find this maximized eigenvalue, Singular
Value Decomposition (SVD) can be performed on A = UΣV⊤, where
the items of U = (𝑈⊤

1 ,𝑈⊤
2 , · · · ,𝑈⊤

K )⊤ are eigenvectors correspond
to the items of diag(Σ) = (Σ1, Σ2, · · · , ΣK)⊤ as eigenvalues.

Therefore, choosing the eigenvector𝑈max corresponding to the
maximized eigenvalue Σmax following Eq. 16, which is denoted as:

Σmax = max _ = max{Σ1, Σ2, · · · , ΣK}, (17)

𝑈max is the solution of mapping 𝑍 (1) for the 1st PCA vector 𝜙 (1) ,
which always exists and holds both maximized global variance in
Eq.13 and minimized reconstruction loss in Eq.14. □

Corollary 1. If the kth maximum eigenvalue Σmax−k in Eq. 17 is
chosen, its corresponding𝑈max−k is denoted as kth PCA vector 𝜙 (𝑘) ,
which represents the kth principal component that more loosely holds
the Eq.13 and in Eq.14 with the linear mapping 𝑍 (𝑘) than the 1st one.

Corollary 2. According to the bi-direction mapping ensured by a
minimized reconstruction loss in Lemma 1, the 1st PCA values 𝜙 (1) of
features X are also similar and distinguished from the opposite parts.
Then, 𝜙 (1)

𝑝 ∈ R as scalars can be more easily divided by a threshold
value than comparing the complicated feature vectors 𝑋𝑝 ∈ RD.

Based on Lemma 1 and Corollary 2 above, DINOv2 features are
bi-directionally mapped to 1st PCA values. As is shown in Figure 3
of the main paper, these features represent the ground surrounded
by the multiple cameras as the most distinguished background, and
the remaining parts are pedestrians and their contexts.

Therefore, we proposemore iterations of PCA as Semantic-aware
Iterative Segmentation (SIS) to further segment the pedestrians and
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(a) Views where NeRF is “well-performed”

(b) Views where NeRF fails to render
Figure 10: Visualizations of how NeRF [7] performs on the 1st frame of Wildtrack dataset. (a) In some views with large scale
pedestrians, NeRF fits color and silhouette (i.e., masks). (b) However, NeRF fails to render small scale pedestrians in other views.
Instead, the sparse dots might come from the leaning pedestrians from other views. For example, the left-most 1st view of (a)
and (b) is physically overlapping. If the pedestrians are rendered to be standing, they should also be observed in the view inside
(b). However, there are no pedestrians in this view, thus they are rendered to be leaning and sparse in the global 3D volume.

Table 7: Comparison of different methods on more popular
Wildtrack [1] and larger-scale CityStreet [17] datasets.

Datasets UMPD MVDet MVDeTr 3DROM SHOT
Wildtrack 61.2 75.7 82.1 75.9 76.5
CityStreet 45.1 65.7 74.1 70.1 72.4

non-human background inside these coarse-grained “foreground”
features, equipped with the zero-shot semantic capability of power-
ful vision-language model CLIP to identify the pedestrian parts and
the proof of Lemma 1 to segment the foreground and background.

7 Experiments on Larger-scale Dataset
For a long time, CityStreet [17] is used to evaluate summed coarse-
grained counting number of tiny pedestrians (MAE/NAE), then
adopted by [18] recently for accurate 3D localization (MODA/MODP).
In Table 7, most popular supervised detectors, including MVDet [5],
MVDeTr [4], 3DROM [10] and SHOT [13], are worse on the larger-
scale scenes with tinier pedestrians in CityStreet than Wildtrack,
reported in this recent paper [18]. But our UMPD also performs
competitively on such a larger-scale and challenging dataset.

8 Qualitative Analysis on Using NeRF
The typical input views in multi-view pedestrian detection datasets
are 6∼7 [1, 5] or even 4 [3]. However, the normal number of views
for NeRF [7] ranges in 10∼103. In practice, more views (>100) are
needed to render large-scale crowded scenes than the simple scenes
with single or a few objects. Thus, qualitative analysis are performed
about using NeRF on multi-view pedestrian detection dataset.

As is illustrated in Figure 10, NeRF fails to render in some views
where there are too few foreground in Figure 10(b), compared to
the other views with more large scale pedestrians in Figure 10(a).
Moreover, the sparse dots in the failing views might come from the
non-vertical pedestrians from other views. For instance, both the
1st left views of Figure 10(a) and (b) are overlapping observations.
If these pedestrians are rendered, they should also be observed in
Figure 10(b). However, no pedestrians are rendered in this view.
Thus, they are non-vertical in the other views of the global volume,
which hinders the correct multi-view pedestrian detection on BEV.

In addition to the limited view numbers, most of the NeRF-based
methods [7, 8, 14] utilize a neural network to implicitly represent
the 3D volume, which adopts a 3D voxel location and an observa-
tion ray as its inputs and the color and density as its outputs, i.e.,
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the information of 3D volume is “memorized” in neural network pa-
rameters. Therefore, it is difficult for our vertical-aware loss LVBR
designed for a whole explicit 3D volume to address the issue above.

Instead, based on the 2D-3D cross modal mapping, our 3D-to-2D
rendering losses based on PyTorch3D [6] directly learn the colors
and densities in the explicit 3D volume predicted by our proposed
Geometric-aware Volume-based Detector (GVD), then our proposed
Vertical-aware BEV Regularization (VBR) LVBR can regularize the
volume following the vertical characteristics of pedestrians.

9 About the Insights of Our Proposed UMPD
As is introduced in the main paper, our proposed UMPD is mostly
motivated by the difficulty of heavy burden to annotate the BEV
pedestrian labels on real data. Even cross-domain methods [15]
cannot perform as ideally as in-domain ones. Therefore, we have
found a solution to learn an annotation-free detector:

• Given the 3D existence (i.e., density) of pedestrians, the BEV
labels mean a top-down observation, and their 2D masks
from multiple cameras mean the surrounding observations.
Without laborious BEV labels, the latter one is the key.

• Hence, the 3D density becomes a “bridge”, to be predicted
by our proposed volume-based detector GVD from 2D multi-
view images (2D-to-3D geometric projection), learned from
unsupervised 2D masks (3D-to-2D rendering losses), and
vertically projected on BEV as the detection results.

• For such a multi-view task, all-view information should be
considered by segmentation rather than just single-view.
Therefore, we propose a new unsupervised method SIS with
Iterative PCA based on multi-image DINOv2 features.

• Moreover, to better identify the pedestrians, powerful vision-
language model CLIP is fundamental for our SIS, and to
constraint the predicted 3D density with no leaning or laying
down, we further proposes VBR to regularize the prediction.

Please note that these insights are logically step-by-step for such
a novel and challenging unsupervised task. To our best knowledge,
these are never discussed before in multi-view pedestrian detection.
Thus, UMPD is effective on real-world and simulated datasets.

For future researches, we have also discussedmore insights about
issues that remain to solve in Section 4 of the main paper:

• In Section 4.4, the experiments show that the quality of 2D
masks greatly affects the performance of our UMPD, even
some supervised models like Grounded-SAM [12] fail in
generalization to this task, which is worth future studies for
better masks in supervised or unsupervised manner.

• In Section 4.5, the visualizations show some wrong results
near the edges of region, where the information from less
overlapped camera views is insufficient for accurate detec-
tion, especially in more populated MultiviewX dataset [5].

The first item above also shows the capability of supervised
models are limited. Once the new domain of real world or realistic
simulation [16] is far from their capability of generalization, the
2D masks are essential as supervisions for in-domain fine-tuning.
However, pixel-wise 2D masks are even harder to annotate than
pedestrian BEV positions to directly supervise multi-view pedes-
trian detectors. Based on the powerful capability of single-modal
as well as multi-modal unsupervised models [9, 11], our UMPD

is applicable in a plug-and-play manner for both real-world and
simulated scenes without any source domain labels.

Finally, we hope this work, as the first fully-unsupervised multi-
view pedestrian detection method, could be a start and inspire more
interesting future works in this field and beyond.
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